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Abstract

Predicting the behavior of road users, particularly pedestrians, is vital for safe
motion planning in the context of autonomous driving systems. Traditionally,
pedestrian behavior prediction has been realized in terms of forecasting future
trajectories. However, recent evidence suggests that predicting higher-level actions,
such as crossing the road, can help improve trajectory forecasting and planning
tasks accordingly. There are a number of existing datasets that cater to the de-
velopment of pedestrian action prediction algorithms, however, they lack certain
characteristics, such as bird’s eye view semantic map information, 3D locations
of objects in the scene, etc., which are crucial in the autonomous driving context.
To this end, we propose a new pedestrian action prediction dataset created by
adding per-frame 2D/3D bounding box and behavioral annotations to the popular
autonomous driving dataset, nuScenes. In addition, we propose a hybrid neural
network architecture that incorporates various data modalities for predicting pedes-
trian crossing action. By evaluating our model on the newly proposed dataset, the
contribution of different data modalities to the prediction task is revealed. The
dataset is available at https://github.com/huawei-noah/PePScenes.

1 Introduction
One of the major challenges faced by autonomous driving systems is predicting road users’ behavior,
in particular, pedestrians as they exhibit a diverse set of actions [1] influenced by various environmen-
tal and social factors [2]. In the context of driving, behavior prediction is commonly actualized in
terms of forecasting the future trajectories of road users. However, as the recent developments in this
field suggest, prediction of higher-level actions of road users, e.g. pedestrian crossing actions, can be
beneficial for trajectory forecasting and motion planning [3, 4, 5, 6, 7].

In recent years, a number of pedestrian action prediction algorithms have been introduced [8] many
of which were trained and evaluated on existing pedestrian behavior datasets [9, 10, 5, 11]. These
datasets, however, are limited since they do not contain information such as 3D maps of environments,
3D locations of objects, etc. necessary for prediction in the context of autonomous driving systems.

In this paper, we introduce a novel dataset for pedestrian crossing action and dense trajectory
prediction for autonomous driving applications. Our dataset contains new per-frame bounding box
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and behavioral annotations for the nuScenes dataset [12]. The annotations are added to 3D as well as
2D data making it suitable for various applications in the autonomous driving domain.

Furthermore, we propose a hybrid baseline model that uses multi-modal data inputs to predict
pedestrian crossing action. We train and evaluate the proposed model on our new dataset and show
how different modalities of data contribute to prediction accuracy.

2 Related Works
2.1 Datasets
Pedestrian behavior prediction can take two forms: implicit where pedestrian trajectories are fore-
casted and explicit where pedestrian actions are predicted. There are many existing datasets that cater
to trajectory prediction for different domains such as surveillance [13, 14, 15], anomaly detection
[16, 17, 18], and intelligent driving [19, 20, 21]. However, the choices for pedestrian action prediction
are more limited. There are a few datasets that provide rich behavioral tags along with temporally
coherent spatial annotations that can be used for pedestrian action prediction in the driving context.
One of the early datasets is Joint Attention in Autonomous Driving (JAAD) [11] which consists of 346
video clips annotated with 2D bounding boxes for pedestrians and behavioral tags for a subset of them
along with the ego-vehicle driver’s actions. A major drawback of this dataset is the lack of ego-motion
information which is vital for prediction from a moving camera perspective. A more recent dataset,
Pedestrian Intention Estimation (PIE) [5], rectifies this issue by providing the ego-vehicle motion
parameters in addition to more samples, annotations for all relevant objects (besides pedestrians),
and pedestrian intention information obtained by conducting a human experiment. There are two
other datasets similar to PIE, namely Trajectory Inference using Targeted Action priors Network
(TITAN) [9] and Stanford-TRI Intent Prediction (STIP) [10] both of which provide 2D bounding box
and pedestrian behavior annotations. These datasets, however, are available under very restrictive
terms of use. VIENA2 [22] is another action anticipation dataset which contains only simulated video
sequences collected from a computer game.

The major drawback of the existing pedestrian action prediction datasets is the lack of information,
such as the semantic map of the environment, 3D coordinates, etc. all of which are necessary for
developing algorithms for autonomous driving systems. Given that our proposed dataset is built on
an existing autonomous driving dataset, all required types of data are available.

2.2 Behavior Prediction in Driving
The dominant approach to predicting road users’ behaviors is to forecast their future trajectories
[23, 24, 25, 26, 27]. However, recent evidence suggests that predicting high-level actions of road
users can benefit various planning tasks both directly [3, 4, 28] and indirectly, e.g. via improving
trajectory forecasting [9, 5, 6, 7].

Many algorithms have been proposed for pedestrian action prediction. A subset of these algorithms
relies on feedforward architectures [3, 29, 28, 11]. Some of these models predict actions directly by
classifying various components in the scene [29], some predict from intermediate features such as
pedestrian head orientation [11], and others generate future scene representations which are used to
classify future actions [28]. Opposed to such unimodal approaches are recurrent architectures that
benefit from a combination of different data modalities, such as images, ego-motion information,
poses, trajectories, etc. to make predictions [30, 10, 4, 22].

While feedforward networks are very powerful for capturing the spatiotemporal representations of
the scenes, recurrent networks provide flexibility for combining multi-modal data with different
dimensionalities. In our proposed approach, we take advantage of both of these architectures in
a hybrid framework that uses both convolutional layers for processing image data and recurrent
networks for encoding trajectories and ego-motion information.

3 PePScenes Dataset
The proposed dataset is a set of additional 2D/3D bounding box and behavioral annotations to the
existing nuScenes dataset [12]. Although the main goal of creating this dataset was for pedestrian
action prediction, the newly added annotations can be used in various tasks such as tracking, trajectory
prediction, object detection, etc. We refer to the new data as Pedestrian Prediction on nuScenes
(PePScenes).
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Figure 1: An overview of the proposed architecture. The model relies on four different input modali-
ties: semantic maps, scene images, trajectories and ego-vehicle states. Visual features are processed
with two sets of Conv2D layers followed by a late-fusion Conv2D layer for joint processing. Trajec-
tories and ego-vehicle states are processed using two LSTMs the output of which are concatenated to
visual features to form a shared representation which is fed into consecutive dense layers to make
predictions.

Annotations. nuScenes has 1000 segments (i.e. data sequences) out of which annotations for 850
are available online. We added bounding box annotations for all the existing objects in the annotated
portion of the dataset. However, for behavioral annotations, we only chose a subset of samples that,
1) appear in front of the ego-vehicle, 2) have or appear to have an intention of crossing (e.g. they
are not far away on a sidewalk), and 3) are observable for at least a few frames prior to making
crossing decision. Given these criteria, we added behavioral labels to 719 unique pedestrian tracks.
The overall statistics of the proposed dataset can be found in Table 1.

Bounding boxes. nuScenes contains LIDAR scans and camera images recorded at 20 and 12Hz
respectively. The existing bounding box annotations of nuScenes, however, are at 2Hz which is fairly
sparse, especially for the task of pedestrian behavior prediction. As a result, we augmented spatial
annotations of pedestrians and all objects at 10Hz. We interpolated the bounding boxes between
two consecutive original annotations using the global coordinates of pedestrians in the environment.
To better align the new bounding boxes with the actual samples, we used a 2D detection algorithm,
RetinaNet [31] pre-trained on COCO [32], to first localize pedestrians in the images and then use the
detected boxes to adjust the locations of added bounding boxes according to the projection of 3D
bounding boxes on the image plane. In the end, we randomly sub-sampled a portion of the data and
manually evaluated them to assure the quality of newly added boxes.

Behavioral labels. Behavioral labels for crossing actions were added to a subset of pedestrians. Each
of the unique pedestrian samples has an object-level annotation indicating whether at a given point in
the sequence they will cross the road in front of the ego-vehicle. In addition, for each frame, we also
include the current crossing state of the pedestrian, i.e. whether they are currently crossing or not by
specifying the start and end time of crossing events. For samples that eventually cross the road, a
label is added to specify the critical point in time when crossing starts.

4 Proposed Model
Problem statement. We formulate pedestrian action prediction as an optimization process in which
the goal is to learn distribution p(At+m

i |SCo,Mo, Lo, Vo) for some pedestrian 1 < i < n where
At+m

i ∈ {0, 1} is pedestrian crossing action at some time t + m in the future. Predictions are
based on observed scenes SCo = {sc1, sc2, ..., sct}, changes in the semantic map of the environment
Mo = {m1,m2, ...,mt}, the pedestrian’s observed trajectory Lo = {l1, l2, ..., lt} and the ego-vehicle
states V = {v1, v2, ..., vt}.
Architecture. As mentioned earlier, we employ a hybrid approach to encode different input modali-
ties (see Figure 1). We use rasterized maps encoded as 3-channel images similar to [33]. The map
is of size 30× 30 meters centered around the ego-vehicle. As for scene images, we use the entire
scene images from the forward center camera resized to 300 × 300 pixels. Both map and scene
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Table 1: The overall statistics of the annotations.
The numbers under New column refer to the newly
added annotations and under Original, the existing
nuScenes annotations.

Annt. New Original Total
# Ped. with beh. 719 - 719
# Cross. peds 149 - 149
# Non-cross peds. 570 - 570
# Per-frame beh. annt. 63.4K - 63.4K
# Ped. box annt. 845K 222K 1.06M
# Other box annt 3.58M 944K 4.52M
Annt. frame rate 10Hz 2Hz 10Hz

Table 2: The performance of the proposed
model trained and tested on the new PePScenes
dataset. Our model is evaluated with different
input modalities.

Method Acc AUC F1 Prec
LSTM 0.78 0.54 0.20 0.39
SF-GRU [4] 0.86 0.60 0.31 0.39

Ours

Scene 0.80 0.58 0.26 0.24
Map 0.82 0.55 0.26 0.23
Map+Scene 0.85 0.62 0.35 0.38
Map+Scene+Traj 0.86 0.62 0.34 0.43
All 0.87 0.71 0.48 0.47

image sequences are stacked channel-wise and fed into two separate sets of Conv2D layers with
sizes {[32, 3, 3], [64, 3, 2], [128, 3, 2]}, {[64, 3, 3], [128, 3, 2], [256, 3, 2]} respectively where values in
order stand for [number of filters, kernel size, stride]. The final outputs of map and scene conv layers
are concatenated and fed into a single Conv2D layer, [512, 3, 1], followed by a global average pooling
to generate visual representations.

For trajectories, we use [x, z] coordinates of pedestrians in the environment and ego-vehicle state
represented by velocity [vx, vy, vz]. Both trajectories and ego-vehicle states are processed using two
LSTMs with 128 cells. The final shared representation is formed by concatenating the output of the
LSTMs and visual representations. The shared representation is then fed into two dense layers, with
dropout of 0.5 in between, to predict actions. For learning, we use binary cross-entropy loss function.

5 Evaluation
Data. We split the data into train/test sets with a ratio of 70/30 while maintaining the ratios of
positive and negative samples consistent. Following [4], we clip sequences up to the first frame of
crossing events. In cases where no crossing occurs, we select the last frame in the center-view camera
where the pedestrian is visible. We choose an observation length of 0.5 seconds (or 5 frames at 10Hz)
and sample sequences from each pedestrian track between 1 to 2s to the event of crossing with an
overlap of 50% between each sample.

Training. We trained the model end-to-end using RMSProp [34] optimizer with batch size of 8 and
learning rate of 5× 10−5 for 50 epochs. To compensate for data imbalance, we used class weights
based on the ratio of positive and negative samples.

Metrics. For evaluation purposes common binary classification metrics as in [4] are used including
accuracy, Area Under the Curve (AUC), F1, and precision.

5.1 Crossing Prediction
We compare the performance of the proposed model to a baseline LSTM model trained only on
trajectories and state-of-the-art crossing prediction algorithm, SF-GRU [4]. For a fair comparison, we
use global coordinates and velocity instead of 2D bounding box coordinates and the ego-vehicle speed
originally used in SF-GRU. In addition, to highlight the contributions of different data modalities to
the prediction task, different subsets of the proposed model are evaluated on PePScenes. We refer to
these subsets based on the types of input modalities that are used.

As shown in Table 2, when relying merely on dynamics features such as trajectory the model performs
poorly. By combining visual features with dynamics information, the results on all metrics show
improvements. The best results are achieved on all metrics when all sources of information are
included as shown by the performance of the proposed model.

6 Conclusion
We proposed a novel dataset for pedestrian behavior prediction by augmenting the nuScenes dataset
with more than 60K behavioral and 4 million bounding box annotations. This is the first dataset
that provides high-level action annotations on 3D data for research in pedestrian behavior prediction.
In addition, new dense annotations in the dataset are suitable for tasks such as tracking, detection,
trajectory prediction, etc. We also proposed a hybrid model for pedestrian crossing prediction and
showed how a combination of different data modalities can improve the accuracy of prediction.
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